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CHAPTER 1

Introduction

1.1 Motivation

Linear nature of quantum mechanical world implies that all eigenstates can be ma-

nipulated, i.e. by a quantum logic gate, at the same time. Such massive quantum par-

allelism would enable a quantum processor to perform a large number of calculations

simultaneously. In consequence of the superposition, the quantum bits (qubits) can do

things that ordinary bits cannot. Since all eigenstates encoded into a quantum register

are coherent, suitable quantum algorithms could exploit the quantum interference and

delayed measurements to observe the weights cancellation that leaves only a very small

number of calculated answers. For a few repeated computations, the distribution of in-

formative outcomes pertaining to all parallel inputs would lead to an exponential speedup

over classical computers.

Although the capabilities of a quantum processor to harness laws of quantum me-

chanics are exceptionally appreciated in the theoretical point of view, viable technologies

are facing practical problems in preparing a robust multiple-qubit composite that satis-

fies the DiVincenzo criteria [1]. Nearly three decades have passed since the universal

quantum computer was first proposed [2], several efficient and promising candidates for

such physical system are still under investigations [3]. Among those approaches, trapped

neutral atoms provide a number of attractive features, e.g. weak interaction with neigh-

bors and the ability to initialize all qubits in a simple fiducial state, which make them

outstanding for controlling quantum decoherence.

Along the pathway of using cold neutral atoms, the realization of quantum computer

strongly depends on the specific preparing techniques and the method for coupling single

atoms. In addition to the standard Doppler cooling techniques [4–6], the trapped atoms

can be further cooled to the motional ground state of the potential wells [7], and their
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electronic states can be prepared in a desired quantum state using standard techniques of

optical pumping [8]. The electronic, spin and motional (oscillation and translation) states

provide degrees of freedom for defining unique qubits. The optical trap itself and external

fields make available a variety of manipulations for coherent control of such states. Mak-

ing all these to a profitable account inherently directs to the most widely studied trapping

technology, the optical lattices [9] is an artificial periodic potentials of light that can store

cold atoms as a crystal and also open innovative manipulation possibilities such as par-

allel operations in a quantum computer. Fig.(1.1) shows an illustrative model of optical

lattices.

An atom 

Optical lattice 

Figure 1.1: Optical lattice potentials (yellow) formed by superposition of orthogonal
standing waves. The lattice can be approximated by array of harmonic oscillator po-
tentials at each lattice site where an atom (red sphere) can be trapped.

To perfectly imitate a crystal, the ability to deterministically fill each optical well

with an atom, hence qubits, is fundamentally crucial. Since the physics of each individual

optical lattice site is the same as that of an optical microtrap, mastering the technique

for efficient loading of a single atom in a far off-resonant dipole trap would implement

scalable quantum computing as desired.

In the past 20 years, few techniques ranging from microscopic magnetic trap [10,11]

to optical dipole trap [12–14] and two-dimensional optical lattices loaded from Bose-

Einstein condensate [15] have been introduced to pave the way for single atoms on

demand. Once believed to be limited at 50% loading probability based on the sub-
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Poissonian scheme that relies on collision blockade regime [16], delicately engineer-

ing bimolecular structure and controllable interactions with light has enabled process

repetition along a forced path, accumulating the chance for particular outcome. Re-

cently by precisely blue-detuning the collision beam from the repulsive semi-molecular

potential, such parametrical optimization has proven to increase the trap efficiency to

82.7% [17, 18].

According to the latest work on single atom loading an optical microtrap based on

the blue-detuned light-assisted cold collision, the efficiency of 91% has been achieved.

However, besides the well designed experiment, the statistical loading does not come

close to the determinism demanded for optical lattices due to the lack of control over

crucial parameters, such as kinetic energy shared, actual trap depth and trap geometry. To

increase the probability of confining a single atom, the physical process underlying the

loading mechanism should not strongly depends on probabilistic of sharing kinetic energy

and those partially uncontrollable parameters. Various alternative techniques concerning

the preparation of a single atom by using highly excited Rubidium atom, the Rydberg

atom, have been investigated of which only two considerable processes are given here.

1. Switching the red-detuned dipole trap to blue-detuned one with similar spatial in-

tensity distribution to kick all ground state atoms out of the trap.

2. Chirping the frequency of Rydberg excitation beam from the side of the optical

micro trap towards the center. While cold ground state atoms are trapped at the

center, the hot atoms on the potential edge are excited to a long-live Rydberg state

and will be either springed away by atomic collisions or pushed out by repulsive

dipole force.

The first approach has introduced so many experimental difficulties with questions

of scalability. For example, the ability to excite one Rydberg atom at a time, the Rydberg

atom lifetime to confine the time scale for color switching red→blue then blue→red again

in order to finally have the ground state atom, the sensitivity to the optical alignment of

overlap trap beams etc.
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On the other hand, the second approach has led to theoretical investigation and ex-

perimental verification in this work. Fundamental questions immediately arose, i.e. how

to eliminate the loss probability of the last atom occasionally excited to the atomic Ry-

dberg state and how to suppress the ground state atom losses due to simultaneous and

pairwise collisions with the same Rydberg atom. Though the solutions can be promptly

given without any affirmative calculation, i.e. by using two-photon excitation and small

principal quantum number respectively without any frequency chirping required, the re-

alization of Rydberg Springer relies on several other behaviors that require intensive cal-

culations. For example, what is the appropriate adiabatic repulsive potential curve? Does

it really exist? How much light shift of Rydberg states? and how long does the Rydberg

molecular state live? Even though the path to Rydberg Springer was beyond the com-

pass at the beginning, the advantages of the Rydberg assisted single atom trap over the

standard light-assisted technique [2] that has been the driving force for further explication

throughout the rest of this thesis can still be deduced as shown in Table 1.1.
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Table 1.1: The comparison between Rydberg springer approach and the blue-detuned
light-assisted collisions [17, 18] that holds the world record of 91% loading efficiency.

Rydberg springer Light-assisted collision

Separation distance 

Repulsive 

Attractive 

480nm 

780nm 

Rc (Condon point) 

Dipole-dipole interaction 

En
erg

y 

Rydberg electron-atom interaction Bound state 

Rb 
Separation distance 

795 nm 

Rc (Condon point) 

Dipole-dipole interaction 

En
erg

y 

Main concept:

Lifetime of Rydberg state

Main concept:

Kinetic energy share

1. It does not need the large blue de-

tune, that may induces two-atom loss

event, because the lifetime of Rydberg

atom play the crucial role in one-atom

loss instead of statistical sharing of the

kinetic energy. Detuning far from the

transition line width that can prevent

the last trapped atom from the optical

excitations is the only requirement.

1. It requires large blue detuning com-

pared to trap depth that can cause two-

atom loss at a collision.

2. High probability of one-body loss

per collision is expected.

2. It requires many collision events be-

fore single atom loss event takes place.

3. The overall performance does not

strongly depend on trap depth.

3. The performance strongly depends

on trap depth and specific to an exper-

iment.

4. Need fine tuning on the two-photon

transition.

4. Single photon transition is of main

concern.
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5. The probability of excitation to

metastable bound states must be min-

imized

5. Blue detune can easily avoid bound

state.

Advantages

1. Insensitive to trap size or geometry.

Only require minimum depth and local

bound state.

2. All uncontrollable parameters, e.g.

energy shared between collision pair,

do not determine the single atom loss

event or loading efficiency.

3. As long as blue-detuning is small

compared with trap depth, the mech-

anism is insensitive to the amount of

blue-detuning.

Disadvantages

1. The key control, kinetic energy

shared, is uncontrollable in a collision

event.

2. Amount of blue-detuning plays the

key role of maximum energy gained.

But what reduces the loading probabil-

ity is the trap itself.

3. The precisely measured depth of the

dipole trap (relative to the temperature

of the trapped atoms) strongly deter-

mines the single atom loss event.

4. The approximation of Gaussian

trap only good at far-detuning and high

beam intensity limit. Otherwise the

trap geometry is not represented by the

spatial distribution of the dipole beam.

This is also crucial for loss events.

5. The question of scalability to opti-

cal lattices which is hard to make all

potential wells identical arises.

In this work, a mechanism for determinism of single-atom loading is proposed to

be achievable via a forced path that combines the two-photon excitation of molecular

Rydberg states [19] and the blue-detuned light-assisted collision [20]. The mechanism

relies on the fact that i) the dipole force from a red-detuned optical dipole trap or an
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optical lattice usually pins the cold ground state atoms at the bottom of the trap while

appeared weakly repulsive to the Rydberg ones [21] and ii) Rydberg states have very long

radiative lifetime. When a colliding atomic pair is excited to a repulsive semi-molecular

potential between Rydberg atom and ground-state atom, the two atoms repel from each

other and only the Rydberg atom has a chance for exiting the trap due to no confining

force exerting on it. If this one-body collisional loss is induced for many times, there are

eventually only two atoms left in the trap. Similar collisional process would force one

atom to stay in the ground state and the other, the Rydberg one, always escapes no matter

what the relative velocities of the two cold atoms with respect to the trap. Therefore, the

final outcome could be that there is only one atom remaining in the trap.

In addition to theoretical calculation of a semi-molecular potential appropriated for

single-atom loading mechanism, this work also presents the experimental investigation of

repulsive interaction between two rubidium atoms excited to a molecular Rydberg state.

The signature of usable repulsive potential was explored through measured trap loss in

one-dimensional optical lattice due to blue-detuned two-photon excitation.

1.2 Thesis outline

This thesis consists of three years of work carried out to map out systematic oper-

ations and explore an idea of exploiting the adiabatic energy levels of Rydberg states of

Rb2 to improve single-atom loading efficiency in an optical dipole trap. The structure of

this thesis is as following.

Chapter 2 is an overview about basic concepts of laser cooling and trapping tech-

niques including magneto-optical trap, optical dipole trap and optical lattice. These con-

cepts of atom-light interactions are frequently mentioned throughout the thesis. The theo-

retical background necessary for the development of our single-atom loading mechanism

is also explicated. It includes i) theoretical model of long-range interaction potential

of molecular Rydberg state of Rb2, ii) stimulated two-photon transition, and iii) blue-

detuned light-assisted cold collision.

Chapter 3 presents our purposed mechanism that utilizes the repulsive interaction
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potential of Rb2 in a Rydberg state to increase the probability for single-atom loading

in an optical dipole trap. The experimental conditions for achieving a near-deterministic

single-atom loading process was suggested and discussed in this chapter.

Chapter 4 details the experiment and results of light-induced trap loss measurement

chosen for testing the possibility of the single-atom loading mechanism using Rydberg

state. The data presented in this chapter were collected from the Centre for Quantum

Technologies (CQT), Singapore.
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CHAPTER 2

Theoretical Background

This work mainly concerns about the utilization of molecular Rydberg state of Rb2

to improve the single-atom loading efficiency in an optical trap. Since all physical phe-

nomena related to this work happen under low temperature regime, vary from µK to mK,

physics of laser cooling and trapping are important. The thermal atoms must undergo a

series of cooling processes in order to reach the sufficiently low temperature such that it

can be trapped in an optical trap. Section 2.1 and 2.2 give an overview of standard cooling

and trapping techniques used in this thesis. Rydberg atom and its general properties are

introduced in section 2.3. Section 2.4 focuses on the quantum mechanical formulation of

two interacting atoms consisting of a Rydberg atom and a ground-state atom. This sys-

tem plays a crucial role in development of our single-atom loading mechanism. Due to

the excitation of molecular Rydberg state of Rb2 requires two-photon transition driven by

780 nm and 480 nm light, section 2.5 gives a general description of two-photon excitation

and dynamic of multilevel atom in light fields. Section 2.6 presents a theoretical model

of light-assisted cold collision in blue-detuning regime. The model is used to evaluate the

possibility and conditions for achieving deterministic single-atom loading.

2.1 Magneto-optical trap (MOT)

MOT is a standard technique that is widely used to cool thermal atoms from a room

temperature to around hundreds of µK and confining the atoms in a particular region.

The central concept of cooling atoms using MOT is that of the scattering force [22]. The

origin of scattering force arise from atoms absorb photons and then momentum of photon

is transferred to the atoms. For every absorbed photon, the atom receives a momentum

change in the direction of photon propagation. The change of momentum due to spon-

taneous emission will be in random directions, hence its average change becomes zero.
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Assuming an atom is a two-level system, the scattering force exerting on the atom in the

presence of a laser field having wavelength of λ is given by [Ref]

Fsp = ~π
γ

λ

(
so

1 + so + (2∆/γ)2

)
, (2.1)

where γ is natural decay rate, so is the saturation parameter, and ∆ is the detuning from

atomic transition. This force can be used to slow atoms by tuning frequency of laser

below the transition frequency. This can be called the light is red-detuned from atomic

transition. If the atom moves in a direction opposite to the beam propagation, it experience

a Doppler shift that will bring the frequency of laser close to transition frequency, hence ∆

is reduced and the force Fsp increased. The speed of atom slow down since the direction

of force is opposite to the direction of atom’s motion.

Spatial confinement of MOT is possible using a pair of anti-Helmhotz coils to pro-

duce a radial magnetic field gradient and three pairs of red-detuned circularly polarized,

counter-propagating and counter-polarized beams. The three pairs are intersect at perpen-

dicular angles at the point where the magnetic field is zero. Fig.(2.1) shows the illustrative

optical alignment of MOT. By assuming the two-level atom has angular momentum quan-

tum number J = 0 for ground state and J = 1 for excited state, the tapping scheme of

MOT can be described as follow. Near the origin point where magnetic field is zero,

the radial magnetic field B(r) increases linearly, hence the Zeeman shift of sub-magnetic

levels mJ are position dependent,

∆EZ =
µB
~
dB

dr
r, (2.2)

where µB is the Zeeman constant and dB/dr is the magnetic field gradient in radial

direction. The Zeeman shifts are shown in Fig.(2.2). It is clear that an atom moving

along positive position will scatter σ+ photons at a faster rate than σ− photons because

the Zeeman effect will shift the magnetic sub-level mJ = +1 down and the transition

frequency closer to the light frequency (purple arrow). Consequently the atom experience

imbalanced force that the net force directs to the center of trap. The same description
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can be applied where the atom moves along negative position. Therefore the position

dependent force acts as restoring force exerting on the atom. The total force acting on the

atom is

FMOT = −αdr
dt
−Kr, (2.3)

where the first term on RHS is the damping force due to Doppler effect and the second

term is the restoring force due to position-dependent of Zeeman effect. The damping

constant α and the spring constant K are given by

α = −4~k2so

(
2∆/γ

1 + (2∆/γ)2

)
, (2.4)

and

K =
α

k

µB
~
dB

dr
, (2.5)

where k is the wavenumber of laser.

So far the two-level system is used to describe the operation of MOT. In a real situa-

tion where atom is a multi-level atom, the excitation scheme becomes more complicated.

Theoretically, cooling and trapping of rubidium-87 atoms using MOT can be achieved

only via the cyclic transition F = 2→ F ′ = 3 of the D2 line. However, the existence of

non-zero line width and multi energy levels causes atom loss from the cyclic transition.

Let a rubidium atom is in the hyperfine ground state F = 2. Although the frequency of

laser may be red-detuned to fall between F ′ = 2 and F ′ = 3 so that the transition rates

for F = 2 → F ′ = 1 and F = 2 → F ′ = 2 are small compared to F = 2 → F ′ = 3,

such small excitation rates can lead to a loss of atoms from the cooling cycle caused by

spontaneous emission to the other ground state, i.e. F ′ = 3→ F = 2. Since the splitting

between the two ground states (F = 1 and F = 2 for Rubidium 87) is very large, about

6.8GHz, atoms confined in this ground state are no longer cooled and trapped. In order to

survive efficient cooling and trapping, a second laser beam, called repumping beam, was

used to pump atoms from the avoid ground state (F = 1) recaptured back to the cyclic

ground state (F = 2).
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Figure 2.1: Optical alignment of magneto-optical trap.

2.2 Optical dipole trap and optical lattice

An optical dipole trap [23] confines atoms by generating the spatial gradient of

energy light shift induced by a far-detuned laser light field that perturbs electronic could

of an atom. The nature of dipole force is conservative and proportional to the gradient of

the optical intensity. Hence it can be mathematically represented in term of a potential.

The perturbation of a far-detuned laser light on a multilevel atom can be treated as a

second order perturbation. The light shift of a particular state |i〉 can be written as

∆Ei =
∑
j 6=i

| 〈j| ĤI |i〉 |2

Ei − Ej
(2.6)

where ĤI is the interaction Hamiltonian that has the form as

ĤI = ~µ · ~E (2.7)

where ~µ and ~E are dipole moment of atom and electric field of light respectively.

An illustrative picture of 1D optical lattice is shown in Fig.(2.3). The standing-
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Figure 2.2: Principle of MOT

wave interference pattern creates a periodic potential inside an optical cavity formed by

two cavity mirrors. Assuming TM00 mode where the spatial profile of the standing wave

is Gaussian and letting the wavelength λ of dipole laser is very long compared to the

transition wavelengths of atoms, the corresponding trap potential is written in cylindrical

coordinated as,

U(r, φ, z) = Uo(z)exp

(
− 2r2

w(z)2

)
cos2

(
2π

λ
z

)
(2.8)

where the trap depth Uo(z) is set to be negative value and a function of position along

the cavity axis ẑ. The z-dependence of Uo comes from the fact that the intensity of laser

beam has different values at different position z. Here z = 0 means the center between

the two mirrors. w(z) is the beam radius of the Gaussian beam at a particular z.

2.3 Rydberg atoms

Rydberg states of an atom are defined as the electronic states that have high prin-

ciple quantum number n in which its valence electron is loosely bound at a large dis-

tance from the ion core. Many behaviors and characteristics of Rydberg atoms have been
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nm 

Cavity Mirror 

Cavity mirror 

Atoms 

1D optical lattices 

Figure 2.3: An one-dimensional optical lattice can be formed between two mirrors.
Atoms are confined at anti-nodes (yellow pancake-like shape) of the standing wave. Any
two adjacent sites are separated by the haft of dipole laser wavelength, here 808 nm laser
is used. The picture is not drawn with true scale.

studied using the quantum defect theory [24]. General properties of Rydberg atom are

very small binding energy, very long radiative lifetime [25] (vary from tens to hundreds

microseconds), large dipole matrix element [26], and very sensitive to external electric

field [27]. Theses atoms also exhibit strong long-range dipole-dipole interaction at dis-

tances and we proposed that it would provide deterministically a single-atom loading in

an optical dipole trap.

2.3.1 Quantum Defect

According to the quantum defect theory, the energy levels of a quantum state |n`j〉

of an alkali atom appear as the distortion from energy levels of hydrogen atom in term of

effective principle quantum number neff

En`j = − 1

2(n− δ`j)2
= − 1

2n2
eff

, (2.9)
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Table 2.1: The quantum defect constant

Parameter nS1/2 nP1/2 nP3/2 nD3/2 nD5/2

δo 3.1311804 2.6548849 2.6416737 1.3480917 1.34646572
δ2 0.1784 0.2900 0.2950 -0.6028 -0.5860

where n is principle quantum number and δn`j is called quantum defect calculated from

the expression

δn`j = δo +
δ2

(n− δo)2
, (2.10)

where δo and δ2 are parameters obtained from fitting the measured transition energies.

Mathematically, the term quantum defect δ is defined as a small defection of principle

quantum number n from hydrogen atom. The origin of the defection arises from the finite

size of the ionic core of the alkali atom, which for rubidium, it consists of the nucleus

and 36 electrons. For low-`, the valence electron penetrates into the ionic core and hence

polarizes the core. The wave functions and eigenenergies of the alkali metals are modified

by the interaction between nucleus and the valence electron. The experimental quantum

defect constants of rubidium atom are listed in table 2.1.

2.3.2 Radiative lifetime of Rydberg states

The zero-Kelvin radiative lifetimes of Rydberg state is normally described by using

a simple analytical expression of the form

τo = τRneff
ε (2.11)

where τR and ε are constants found by fitting the calculated τo values as a function of the

effective principal quantum number neff . Values for τR and ε reported in [25] are given

in table 2.2. Fig.(2.4) shows the plot of zero-Kelvin radiative lifetime of Rydberg states

nS1/2 and nD3/2,5/2 calculated from Eq.(2.11).
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Table 2.2: Values of the parameters τR and ε in Eq.(2.11)

Parameter nS1/2 nP1/2 nP3/2 nD3/2 nD5/2 validity range
τR 1.368 2.4360 2.5341 1.0761 1.0687 10 < n < 80
ε 3.0008 2.9989 3.0019 2.9898 2.9897
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Figure 2.4: Lifetime of Rydberg state nS1/2 (blue), nD3/2 (dashed Red) and nD5/2 (dot-
ted Green) as function of principle quantum number n.

2.4 Rydberg-ground adiabatic interaction

Molecular Rydberg states play an important role in our proposed single atom load-

ing mechanism in an optical dipole trap, section 3.1. In an experimental point of view, it

is necessary to know about strength of Rydberg-ground interaction. This section presents

the theoretical study of interaction between a Rydberg atom and a neutral ground-state

atom. The theoretical approach and the concept of calculation method presented here

follow Khuskivadze’s work [28]. The adiabatic picture is exploited by assuming that rel-

ative velocity of colliding atomic pair to be much lower than velocity of Rydberg electron.

This allows the application of Born-Oppenheimer approximation for the potential energy

curves calculation.
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Table 2.3: The fit parameters in atomic unit for the pseudopotential VLS(r) in Eq.(2.64)
and Eq.(2.65) [28].

α λ State A γ rc
319.2 7.4975 1S 4.5642 1.3438 1.8883

3S 68.576 9.9898 2.3813
1P -4.2625 1.0055 1.8869
3P -1.4523 4.8733 1.8160

2.4.1 Formalism

The system consists of a Rydberg ion core C+, a neutral alkali ground-state atom

B, and a Rydberg electron e−, Fig. 2.5. The whole position space is divided into two

hard physics regions: The region I where the e-B interaction (inside the sphere of ra-

dius r0) dominated and the region II dominated by the e-C+ interaction (space enclosed

by surfaces S1 and S2). The interaction in region I is taken into account by utilizing

the Coulomb’s Green function including quantum defect [29, 30]. Due to the nature of

screening effect, the e−-B interaction mainly results from the Rydberg electron interact-

ing with the valence electron of the neutral atom B and it can be represented in term of

short-range pseudopotential [31]. Hence the angular momentum basis set is chosen to

be {L, S, J,MJ} where L, S, and J are two-electron orbital angular momentum, two-

electron spin, and total angular momentum respectively. Since the problem has a cylin-

drical symmetry along the internuclear axis ~R, the projection of total angular momentum

j on the axis is a constant of motion, hence MJ is conserved. In the Born-Oppenheimer

approximation, one can consider the Hamiltonian of the Rydberg electron interacting with

C+ and B, and the Hamiltonian of C+-B separately. For the first case, the corresponding

Schrödinger equation in atomic unit of the single Rydberg electron in the presence of the

neutral atom B and its ion core C+ is(
−1

2
∇2 + V̂I(~r, ~R)− 1

|~r − ~R|
+ Vqd(~r − ~R)

)
ΦMJ

(~r, ~R) = EMJ
ΦMJ

(~r, ~R), (2.12)
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Figure 2.5: Coordinate system used in this work. The position of atom B is chosen to be
the origin. The internuclear ~R is a vector directed form neutral atom B to the core C+ of
Rydberg atom. It is the quantization axis. ~r is a position vector pointed from neutral atom
B to the valence electron e. r0 is the radius of the sphere enclosed by surface S1 dividing
space into two region where the closed sufrace S2 extends to infinity.

where the subscript MJ means that it is a good quantum number that can be used to

specify an eigenstate ΦMJ
. The interaction potential V̂I(~r, ~R) is given by

V̂I(~r, ~R) = VeB(~r)− αo~r · ~R
r3R3

. (2.13)

The first term of Eq.(2.13) is the combination of the spin-orbit interaction and the short-

range pseudopotential of e-B that reproduces the electron binding energies for negative

ion and the scattering phase shifts given by the Dirac R-matrix calculation [32]. The

second term is the effect of three-body polarization interaction consisting of the neutral

atom B polarized by the ion core C+ interacts with the Rydberg electron e−, and the

atom B polarized by e− interacts with the ion core C+. The polarizability αo of a neutral

rubidium atom is given in [33]. The third and the fourth terms of Eq.(2.12) describe

the Coulomb interaction and the quantum defect correction respectively. All interaction

described so far are only about Rydberg electron interacting with the neutral atom and its

ion core. To obtain the total energy of the interacting system C+B, it is needed to add

C+-B polarization interaction to the electron energy EMJ

UMJ
(R) = EMJ

− αo
2R4

. (2.14)
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In order to find an eigenenergy of the Schrod̈inger equation Eq.(2.12), it is necessary

to compose appropriate boundary conditions of the surface S1 and S2 on the Eq.(2.12) and

then solve the differential equations. Due to the Coulomb interaction dominates in outer

region II and its range is infinite, the wave function ΦMJ
vanishes on the surface S2 that

extends to infinity. The boundary condition on S1 is related to the way of matching wave

functions having different symmetries (spherical and cylindrical) in the two regions of

space. Khuskivadze [28] have done well this matching by using the Kirchhoff-integral

method in term of Coulomb Green function [34]. He matches the inner wave function

with the outer wave function on the surface S1 using the Kirchhoff integral equation.

It allows him to incorporate the boundary conditions at infinity where the wave func-

tion decays exponentially. In this work, the derivation of the Kirchhoff integral equa-

tion is presented in the slightly different way. The quantum Coulomb Green’s function

GR(~r, ~r ′, EMJ
) is defined as the solution of the Coulomb Schrod̈inger equation where

there is a point source placed at ~r ′,(
−1

2
∇2 − 1

|~r − ~R|
+ Vqd(~r − ~R)− EMJ

)
GR(~r, ~r ′, EMJ

) = −δ(~r − ~r ′), (2.15)

where GR(~r, ~r ′, EMJ
) ≡ G(~r − ~R,~r ′ − ~R,EMJ

) is the Green funcstion whoes center is

shifted to be at ~R. By multipying Eq. (2.12) by GR(~r, ~r ′, EMJ
), Eq. (2.15) by ΦMJ

(~r, ~R),

then substracting one from another and take volume integration over space inside the

sphere of radius ro, the result is

1

2

∫
V1

(
ΦMJ
∇2GR −GR∇2ΦMJ

)
d3~r +

∫
V1

V̂IGRΦMJ
d3~r = ΦMJ

(~r ′, ~R). (2.16)

The equation is valid if 0 < r′ < ro. After using the Green’s second identity to transform

the volume integral to the surface integral for the first term which contains kinetic energy

operator∇2,

1

2

∮
S1

(ΦMJ
∇GR −GR∇ΦMJ

) · dS +

∫
V1

V̂IGRΦMJ
d3~r = ΦMJ

(~r ′, ~R), (2.17)
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where dS is the normal vector on S1 and V1 is the volume inside the sphere of radius

ro enclosed by the surface S1. According to the scattering theory in the framework of

quantum mechanics, the corresponding Lippman-Schwinger equation [35] is

ΦMJ
(~r ′, ~R) = φ0(~r ′, ~R) +

∫
V̂I(~r, ~R)GR(~r, ~r ′, EMJ

)ΦMJ
(~r, ~R)d3~r, (2.18)

where the wave function φ0(~r) is an eigenfunction of non-perturbed Rydberg atom. This

eigenfunction is chosen to vanish because the system of perturbed Rydberg atom is been

considering. Notice that the second term of Eq.(2.18) is the integral over all space. How-

ever if the radius r0 is larger than the effective radius of potential V̂I , the infinite integral

can be transformed to be a finite integral over the region inside the sphere of radius r0.

Hence, from Eq. (2.17) and Eq. (2.18),

∮
S1

(ΦMJ
∇GR −GR∇ΦMJ

) · dS = 0 : 0 < r′ < r0. (2.19)

This is the same result presented in [28,34,36] and it is called Kirchhoff-integral equation.

It can be used as a matching condition for wave functions on the surface S1. Hence it is

an equation for determination of the eigenenergies.

In order to utilize the spirit of Eq. (2.19), it is needed to transform the integral

equation into a particular form that the calculation can be performed numerically. The

transformation is done by expanding Eq.(2.12) on the angular momentum basis set |α〉.

The short-range e-B interaction potential can be written in the form of pseudopotential as

V̂eB(~r) =
∑
α

Fα(r) |α〉 〈α| , (2.20)

where the summation is taken over angular momentum of two-electron spinor in L-S

coupling scheme, α = {L, S, J,MJ}. Fα(r) is a combination of the effective interaction

of an electron and a neutral atom plus the spin-orbit interaction

FLS(r) = VLS(r) +
1

2c2r

dVLS
dr

(~̀1 · ~s1 ), (2.21)
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where ~̀
1 · ~s1 operator acts only on the Rydberg electron because it is assumed that the

alkali atom B is in the ground state, hence its valence electron is in the S orbital. The

pseudopotential VLS(r) has a spherical symmetry and its explicit form is given in subsec-

tion 2.4.3. Then the wave function ΦMJ
(~R,~r) inside the inner region I is expanded in the

two-electron angular momentum basis

ΦMJ
(~R,~r) =

∑
α′

uα′(r)

r
|α′〉 , (2.22)

where uα′(r) is the radial wave function and the angular momentum basis |α〉 is expanded

on the uncouple basis |LML〉 and |SMS〉

|α〉 = |LSJMJ〉 =
∑

ML,MS

CJ,MJ

L,ML,S,MS
|LML〉 |SMS〉 , (2.23)

where ~L = ~̀
1 + ~̀

2, and ~S = ~s1 + ~s2 are total orbital angular momentum and total spin

of two electron. The Clebsch-Gordan coefficients CJ,MJ

L,ML,S,MS
are given by,

CJ,MJ

L,ML,S,MS
= (−1)−L+S−MJ

√
2J + 1

 L S J

ML MS −MJ

 , (2.24)

where |LML〉 are the spherical harmonics, and |SMS〉 are the total spin states of the

Rydberg electron and the valence electron. After substituting Eq. (2.22) into Eq. (2.12),

neglecting the quantum defect Vqd due to the effect is very small in the inner region,

and then projecting Eq. (2.12) on 〈α|, the result is the system of coupled second-order

differential equations

(
−1

2

d2

dr2
+
L(L+ 1)

2r2
+ VLS(r) + Iα(r)− EMJ

)
uα(r, R) =

∑
α′

Dαα′uα′(r, R),

(2.25)

where

Dαα′ = 〈LSJMJ |
1

|~r − ~R|
+
αo~r · ~R
r3R3

|L′S ′J ′MJ〉 , (2.26)
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and

Iα(r) =
1

2c2r

dVLS
dr
〈LSJMJ | ~̀1 · ~s1 |LSJMJ〉 . (2.27)

Using Eq. (2.23) and the expansion

1

|~r − ~R|
=
∞∑
`=0

∑̀
m=−`

r`<
r`+1
>

(
4π

2`+ 1

)
Y ∗`m(r̂)Y`m(R̂), (2.28)

where z axis is chosen along internuclear axis ~R and due to considering in the inner region

it can be set r < R, hence

1

|~r − ~R|
=
∞∑
`=0

r`

R`+1

√
4π

2`+ 1
Y`0(r̂), (2.29)

and then the matrix element Eq. (2.26) becomes

Dαα′ = δSS′(−1)−L−L
′√

(2J + 1)(2J ′ + 1)(2L+ 1)(2L′ + 1)

×
|L+L′|∑
`=|L−L′|

(
r`

R`+1
+

αd
r2R2

δ`1

)L ` L′

0 0 0

B`
αα′

(2.30)

and

B`
αα′ =

ML+MS=MJ∑
ML,MS

(−1)ML

 L S J

ML MS −MJ

 L ` L′

−ML 0 ML

 L′ S ′ J ′

ML MS −MJ


(2.31)

where the symbols in parenthesis denote 3j symbol coefficients. Eq.(2.25) is the coupled

radial Schrödinger equation and it can be solved numerically using a standard method

in electron-atom collision theory. To solve the equations, the set of linearly indepen-

dent solutions needed to be calculated first and then by exploiting the boundary condition

Eq.(2.19), a suitable combination of linearly independent solutions and an eigenenergy

are determined. Mathematically, a general solution of the radial Schrödinger equation

Eq.(2.25) consists of regular and irregular solutions at origin. However, a physical solu-

tion should be only written as a summation of linearly independent solutions regular at
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origin

uα′(r, R) =
∑
j

Ajνα′j(r, R), (2.32)

where j denotes independent solutions, and Aj are constants. The matrix να′j is called

fundamental matrix for Eq.(2.25). Note that the number of linearly independent solutions

regular at origin is equal to the number of coupled differential equations. After substitut-

ing Eq.(2.22) and Eq.(2.32) into Eq.(2.19) and then projecting on 〈α|,

∑
j

AjKαj(EMJ
) = 0, (2.33)

where

Kαj(EMJ
) =

∑
α′

δSS′ (2.34)

However, near the origin, the spin-orbit interaction has non-physical singularity. the

Dirac equation must be applied near the origin and then calculated Dirac wave function

is transformed into Schrödinger wave function in jj representation and then transform

it into LS representation (Appendix B) before performing numerical integration. This

process, naturally, must be repeated for varying values of the internuclear separation R in

order to map out the internuclear potentials.

2.4.2 Coulomb Green function and quantum defect correction

This section presents the expression and numerical estimation of Coulomb Green’s

function. Consider definition of the Coulomb Green function G(~r1, ~r2, E) as,

(
−1

2
∇2

1 −
1

r1

+ Vqd(r1)− E
)
G(~r1, ~r2, E) = −δ(~r1 − ~r2) (2.35)

Mathematically, the solution of Eq. (2.35) can be written as in the form of an eigenfunc-

tion expansion.

G(~r1, ~r2, E) = −
∞∑
`=0

∑̀
m=−`

∫ ∞
0

φ∗`m(k, ~r1)φ`m(k, ~r2)

(k2/2)− E
dk−

∞∑
n=0

∞∑
`=0

∑̀
m=−`

φ∗n`m(~r1)φn`m(~r2)

En − E
(2.36)
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The first term is the summation and integration over the continuous spectrum of hydrogen

atom. The second term is summed over the discrete spectrum. In order to include the

quantum defect in calculation, the Green function G(~ra, ~rb, ν) has two components as

G(~r1, ~r2, ν) = Go(~r1, ~r2, ν) +Gqd(~r1, ~r2, ν) (2.37)

The first term is the particular solution of inhomogeneous equation Eq. (2.35) and the

second term is the solution of homogeneous equation. The effective quantum number v is

defined by

ν ≡ 1√
−2E

(2.38)

The pure Coulomb Green function in closed form is given by

Go(~r1, ~r2, ν) = − Γ(1− ν)

2π|~r1 − ~r2|

[
Wν,1/2(α)

∂

∂β
Mν,1/2(β)−Mν,1/2(β)

∂

∂α
Wν,1/2(α)

]
(2.39)

where

∂

∂β
Mν,1/2(β) =

(
1

2
− ν

β

)
Mν,1/2(β) +

(
1 + ν

β

)
M1+ν,1/2(β) (2.40)

∂

∂α
Wν,1/2(α) =

(
1

2
− ν

α

)
Wν,1/2(α)− 1

α
W1+ν,1/2(α) (2.41)

and the arguments α and β are defined as

α ≡ 1

ν
(|~r1|+ |~r2|+ |~r1 − ~r2|) (2.42)

β ≡ 1

ν
(|~r1|+ |~r2| − |~r1 − ~r2|) (2.43)

Note that Mk,m(z) and Wk,m(z) are Whittaker function of first kind and second kind

respectively. They are defined as

Mk,m(z) = e−z/2zm+1/2
1F1(

1

2
+m− k, 1 + 2m; z) (2.44)

Wk,m(z) = e−z/2zm+1/2U(
1

2
+m− k, 1 + 2m; z) (2.45)
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where 1F1 and U are confluent hypergeometric functions of first kind and second kind.

The quantum defect correction of Green function is given by

Gqd(~r1, ~r2, ν) = − ν

r1r2

∞∑
`=0

Γ(1 + `− ν)

Γ(1 + `+ ν)

sin[π(δ` + `)]

sin[π(δ` + ν)]

2`+ 1

4π
P`(cosγ)

×Wν,`+1/2

(
2r1

ν

)
Wν,`+1/2

(
2r2

ν

) (2.46)

where γ is the angle between ~r1 and ~r2, and δ` is the ` dependent quantum defects. It

should be noted that by combining the Coulomb Green function and the quantum defect

correction the Coulomb poles in the sum Eq. (2.37) cancel out exactly. The remaining

poles are determined by

En` = − 1

2(n− δ`)2
(2.47)

Let the coordinate system be defined as following,

~r1 ≡ ~ra − ~R

~r2 ≡ ~rb − ~R
(2.48)

where the vector ~R is directed from the neutral atom to the Coulomb ion core. Hence the

cosine of angle between ~ra − ~R and ~rb − ~R is given by

cosγ =
(~ra − ~R) · (~rb − ~R)

|~ra − ~R||~rb − ~R|
(2.49)

The matrix element of the Green function 〈LML|GR |L′ML〉 is

〈LML|GR |L′ML〉 ≡ A

∫
Sb

∫
Sa

Y ∗L,ML
(Ω̂a)GR(~ra, ~rb, ν)YL′,ML

(Ω̂b)dΩadΩb (2.50)

where the subscript R denotes R-dependence of the matrix element and the constant A is

A =

√
(2L+ 1)

4π

(L− |ML|)!
(L+ |ML|)!

×

√
(2L′ + 1)

4π

(L′ − |ML|)!
(L′ + |ML|)!

(2.51)
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Due to the cylindrical symmetry, the four dimensional integration can be reduced to three

dimensional integration. Letting rb ∼ ra = r0, we obtain

〈LML|Go |L′ML〉 = −AΓ(1− ν)

∫ 2π

0

∫ π

0

∫ π

0

[
ν

(
1

α
− 1

β

)
Wν,1/2(α)Mν,1/2(β)

+

(
1 + ν

β

)
M1+ν,1/2(β)Wν,1/2(α)

+

(
1

α

)
W1+ν,1/2(α)Mν,1/2(β)

]
× P

|ML|
L′ (cosθa)P

|ML|
L (cosθb)

|~ra − ~rb|
eiMLφsinθasinθbdθadθbdφ

(2.52)

where α and β in this coordinate system are given by,

α(θa, θb, φ) =
1

ν

(
|~ra − ~R|+ |~rb − ~R|+ |~ra − ~rb|

)
(2.53)

β(θa, θb, φ) =
1

ν

(
|~ra − ~R|+ |~rb − ~R| − |~ra − ~rb|

)
(2.54)

where

|~ra − ~R| = r(θa) (2.55)

|~rb − ~R| = r(θb) (2.56)

|~ra − ~rb| =
√

2r0

√
1− cosγ (2.57)

where r(θ) ≡
√
r2

0 +R2 − 2r0Rcosθ. The cosine of angle γ is given by

cosγ = C(θa, θb)cosφ+D(θa, θb) (2.58)

where

C(θa, θb) =
r2

0sinθasinθb
r(θa)r(θb)

(2.59)

D(θa, θb) =
(r0cosθa −R)(r0cosθb −R)

r(θa)r(θb)
(2.60)
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For the quantum defect correction,

〈LML|Gqd |L′ML〉 = 2πAν
5∑
`=0

Γ(1 + `− ν)

Γ(1 + `+ ν)

sin[π(δ` + `)]

sin[π(δ` + ν)]

2`+ 1

4π

×
∫ π

0

∫ π

0

Wν,`+1/2

(
2r(θa)
ν

)
Wν,`+1/2

(
2r(θb)
ν

)
r(θa)r(θb)

F`,ML
(θa, θb)

× P |ML|
L′ (cosθa)P

|ML|
L (cosθb)sinθasinθbdθadθb

(2.61)

where PM
L (z) is the associated Legendre polynomial (see Introduction to Quantum me-

chanics, Davis J. Griffith, 2rd edition, p136). The summation over ` in quantum defect

correction is limited to the first five terms because the quantum defects for high ` can be

ignored. The functions F`,ML
(θa, θb) is given by

F`,ML
(θa, θb) =

∫ 2π

0

P`(cosγ)eiMLφadφ (2.62)

where P`(z) is the Legendre polynomial.

In order to remove poles of Green function for zero searching calculation, the matrix

element can be multiplied by
5∏
`=0

sin[π(δ` + ν)]

Γ(1− ν)
(2.63)

2.4.3 Effective interaction for electron-atom scattering

The method used to describe the interaction between an electron and an alkali atom

in low-energy scattering scheme is the model-potential approach [31,37]. Due to scatter-

ing energy is low, it is naturally to ignore the scattering wave with L > 1 hence only s and

p wave scattering are relevant. It should be noted that by separating the interaction po-

tentials with different orbital angular momentum L, the effective interaction can be called

pseudopotential. The model-potential VLS(r) in Eq.(2.21) for s-wave scattering, L = 0,

has an analytic form in atomic unit as

V0S(r) = −A
r
e−γr − α

2r4

(
1− e(r/rc)6

)
(2.64)
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while for the p-wave scattering, L = 1, the potential is written as

V1S(r) = −Zc
r
e−λr − Ae−γr − α

2r4

(
1− e(r/rc)6

)
(2.65)

where the constants A, γ, α, and λ are fitted parameters shown in Table.2.3. Zc is the

nuclear charge, for rubidium atom it is 37. Physics of scattering between low-energy

electron and an alkali atom is relevant to a virtual 3S state and a 3P shape resonance

[38, 39]. These features play an important role in formation of long-range molecular

Rydberg states. The classical description of a shape resonance in scattering is presented

[40] by the projectile of incoming electron tunneling through a potential barrier due to

repulsive electron-electron interaction. The electron remains within a pseudo-bound state

for a while and then tunneling out from the barrier. Although there is no a classical

description of a virtual state in scattering, a simple picture of the state is described as

follow. As the depth of an attractive scattering potential is decreased provided there is no

potential barrier, an energy level of a bound state moves through the continuum threshold

to become a pseudo-bound state called virtual state [41].

2.5 Multi-level atom in light fields and two-photon transition

The semi-classical Hamiltonian of a system consisting of an multi-level atom inter-

acting with coherent electromagnetic fields is

Ĥ = Ĥ0 + V̂I(t)

=
∑
j

Ej |j〉 〈j| −
∑
i 6=j,k

~µij · ~Ek |i〉 〈j|
(2.66)

where the Ĥ0 denotes the field-free time-independent atomic Hamiltonian whose eigen-

values and eigenfunctions are Eα = ~ωα and |α〉 respectively. The second term, ĤI ,

is the time-dependent interaction with radiation fields of mode k. This interaction plays

the important role in transition between eigenstates of atomic Hamiltonian Ĥ0. The time

evolution of optical transition of multi-level atom in the presence of coherent light fields

is described using the density matrix formulation. The density operator ρ̂ of a multi-level
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system in a pure state |Ψ〉 is given by

ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| , (2.67)

where the state |Ψ(t)〉 can be written in the interaction picture [35] as superposition of all

eigenstates of the unperturbed Hamiltonian Ĥ0.

|Ψ(t)〉 =
∑
α

Cα(t) |α〉 . (2.68)

The evolution of the density operator ρ̂ in the representation is then described by a

system of equations known as the optical Bloch equations.

dρ̂

dt
=
i

~

[
ρ̂, V̂I(t)

]
+ Ĝ(γ, ρ̂), (2.69)

where Ĝ is the operator accounting for the relaxation effect due to decoherence processes.

Applying the standard rotating wave approximation, the matrix element of interaction

potential is

Vij =
∑
k

~
Ωk
ij

2
e−i∆

k
ijt, (2.70)

where Ωk
ij is the on-resonance Rabi frequency of atomic transition i → j driven by the

radiation field of mode k. This frequency fundamentally represents how fast atom absorbs

photon and reemit the photon via stimulated absorption and stimulated emission. The

detuning ∆k
ij = ωk − ωij is the frequency difference between the radiation field of mode

k and the transition ij.

The operator Ĝ has both diagonal and off-diagonal (coherence) elements. Assum-

ing that all decoherence arise from the spontaneous emission. Then the diagonal elements

are determined from the conservation of probability and the off-diagonal elements Gij

are proportional to only the spontaneous emission rate γij of decay channel i → j. The

rate γij is determined by considering the interaction of an atom with quantized electro-

magnetic field in free space. This phenomena corresponds with a discrete level system
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coupled to a continuum states of external field. The interaction Hamiltonian is given by

ĤI = i
∑
k

∑
i 6=j

(
~ωk
2εoV

)1/2

µij · ~Ek
[
âke

i(~k·~r−ωkt) − â†ke
−i(~k·~r−ωkt)

]
|i〉 〈j| (2.71)

where the summations are taken over both all field modes k and atomic transitions of

interest i → j. When the analytic expression of Ĝ is known, the Eq.(2.69) can be used

to setup the master equations where its solutions describe the dynamic picture of a multi-

level atom in multi-mode radiation fields. Appendix C presents the application of the

formulation in quantum dynamic of magneto-optical trap.

2.5.1 Two-photon transition

Fundamentally a transition frequency from a ground-state to a Rydberg state of an

alkali atom is in an order of hundreds THz. There is no available laser having correspond-

ing wavelength to do single-photon excitation. Hence in many Rydberg experiments the

two-photon excitation is used. Dynamic of two-photon transition can be studied through

a three-level system interacting with two laser fields. In Rydberg case, the system forms

a ladder in which successive energies lie higher than the predecessor. The laser field cou-

pling the ground state to the intermediate state is called probe beam and the other field,

called coupling beam couples the intermediate state and the Rydberg state.

2.6 Light-assisted cold collision in blue-detuning regime

This section presents the general concept of light-assisted collision in blue detuning

scheme. Landau-Zener formula used in calculation probability of inelastic collision and

the physics of two-photon transition.

2.6.1 Landau-Zener model

This section presents semiclassical picture used for describing cold collision in light

field. The The Landau-Zener probability that the collision partner remain on the ground
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state as it passes once through the interaction region is,

Pg = exp

(
− π~Ω2

2α|p|/µ

)
(2.72)

where Ω is the Rabi frequency and α is the slope of the difference potential U(R) =

Ue(R)− Ug(R) evaluated at the Condon point Rc,

α =

∣∣∣∣d∆

dR

∣∣∣∣
Rc

=
dU(R)

dR

∣∣∣∣
Rc

(2.73)

The parameter µ is the reduced mass of collision partner. The momentum p is given by

the relation to kinetic energy at a particular temperature T .

Ekin =
p2

2µ
≡ kBT (2.74)

The probability of exiting the collision on the excited state asymptote after traversing the

crossing region twice is

P∞e = Pg(1− Pg) (2.75)
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CHAPTER 3

Rydberg State Revisited for Deterministic Single-atom Source

This chapter presents our proposed mechanism for loading single rubidium atom

in an optical dipole trap. The chapter begins, in section 3.1, with an illustrative picture

of process for preparing trapped single atom by exploiting the long-range interaction of

a Rydberg atom and a ground-state atom. It gives a qualitative understanding how the

mechanism strongly induces one-body collisional loss that plays an important role in the

single-atom loading achievement. Section 3.2 details the development of experimental

conditions that the mechanism comes into operation. These conditions are needed for

designing a single-atom trap experiment. In section 3.3, the model of light-assisted col-

lision via two-photon excitation was used to evaluate the possibility in using a molecular

Rydberg state of Rb2 to load single rubidium atom in an optical dipole trap.

3.1 Single-atom loading via light-assisted Rydberg-ground collision

The mechanism for loading single atom is shown in Figure 3.1 and described as

following. Suppose an atom is a three-level system; ground state, intermediate state,

and Rydberg state. Let atoms be initially loaded into a far-off-resonance optical dipole

trap. The interaction between a Rydberg atom and a ground-state atom is represented

by a long-range adiabatic potential energy curves that includes both metastable molecule

states and repulsive potential. The application of two-photon transition consisting of

780nm and 480nm photons, of which combined frequency is slightly higher than the

resonance frequency between the ground state and preselected Rydberg state (measured

on asymptotic lines in non-interaction regime), would give raise to the induced collision

between ground and Rydberg atoms through the repulsive potential curve. The Condon

point Rc is defined as the internuclear distance where the two-photon transition is on a

resonance. Since the Rydberg atom only senses weakly repulsive dipole force [42] and

32



the ground-state atom is tightly pined by the trap, the Rydberg atom tends to slowly drift

out from the trap region. Due to its long lifetime, the whole process of collision has

completed before the spontaneous emission and hence the one-body collisional loss is

significantly boosted. As time passes, such collisional loss events continue until there is

only one atom left in the trap; hence the determinism of loading a single atom.

internuclear distance 

Repulsive 

Attractive 
480nm 

780nm 

Rc (Condon point) 

Dipole-dipole  
interaction 

Ground + Intermediate 

Ground + Rydberg 

Ground + Ground 

En
erg

y 

Meta stable molecule state 

Two-photon 
excitation 

 δ

780nm 

480nm 

Position in trap 

Rydberg atom 

Ground-state atom 

(a)  (b) 

 Δ

Figure 3.1: a) Potential energy curves of Rydberg-ground interaction and intermediate-
ground interaction as function of internuclear distance (orange and black-gray curves
respectively). The frequency of 780nm light is far blue-detuned from the intermediate
transition by ∆ to prevent real excitation to the intermediate state in which the two-photon
excitation is influenced. The intermediate-ground state and Rydberg-ground state are
coupled by 480nm light. The small blue detuning δ of total frequency is selected such
that the excitation takes place whenever two colliding atoms come close atRc distance. b)
Energy level of an atom in optical dipole trap. Considering an atom of a colliding atomic
pair excited to the Rydberg state (blue circle), it is not confined by the dipole force any
longer and goes away. Hence the other atom (purple circle) remains. Many cycles of this
one-body collisional lost process will end at the situation there is only one atom left.

3.2 Loading constraints

Before going further to the practical detail of a single-atom trap experiment, there

are two parameters needed to be introduced. First, a parameter called escape distanceDes

is defined as the minimum distance for a particular trap potential that a Rydberg atom with
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total energy E needs to move from the center of trap to the point where after decaying to

the ground state the residual kinetic energy is still high enough for exiting the trap. This

distance can be calculated from

Des = wo

√√√√ln

(√
2Uo
mv2

mp

)
, (3.1)

where Uo and wo are trap depth and 1/e radius of trap potential. vmp is the most probable

velocity given by Maxwell-Boltzmann statistics and it depends on temperature of atomic

ensemble. Second, it is called drift distance Df and defined as the maximum distance

that a free Rydberg atom with lifetime τo in an atomic ensemble having temperature of T

can move from a point to an another point. The analytic expression of this distance is

Df =

√
2kBT

m
τo, (3.2)

where m is the rest mass of an atom. In order to reach the situation where the light

assisted one-body collisional loss dominates over any loss processes, the drift distance

must be longer than the escape distance,

Df > Des. (3.3)

This condition ensures that when a ground-state atom is excited to the Rydberg state the

atom will escape the trap after it decays to the ground state.

From the practical point of view, the strength of repulsive interaction between Ryd-

berg atom and ground-state atom fundamentally decreases as principle quantum number

n increase. This relation limits the range of available blue detuning δ that can be selected

to determine a Condon point Rc. Moreover, smaller δ means the total frequency of ex-

citation fields is closer to single atom resonance. Hence the probability of one-body loss

induced by one-body excitation, instead of by induced collision, is higher. This causes a

major problem when there is only one atom left in the trap in the presence of excitation

laser field. The atom has a chance to be excited to Rydberg state and then drifts out from
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the trap, hence single-atom loading efficiency will strongly decrease. Hence there are

two crucial conditions that must be satisfied in order to prevent such problem. First, the

principle quantum number n must be small in the way that corresponding barrier poten-

tial is strong enough in which the detuning δ can be chosen significantly larger than the

one-body scattering rate of two-photon transition. Second, to satisfy Eq.(3.3), the trap

dimension, wo, must be smaller than the drift distance determined by the lifetime of the

Rydberg state of interest. However, the latter condition is automatically satisfied in a stan-

dard 3D optical lattice experiment since the dimension of single lattice site is in order of

sub-micron while typical values of drift distance of cold Rydberg atom, having principle

quantum number between 30 to 50, lie between 1 µm to few tens µm.
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Figure 3.2: Escape distance Des is the minimum distance that the Rydberg atom needs to
move for escaping the trap.

In addition to the two presented condition, the density is an important factor needed

to be concerned. If the Condon point Rc is larger than averaged separation distance

between two adjacent atoms in the trap, at a particular high density, it has a chance that

a colliding pair will be excited to a metastable bound state (shaded area in Fig.(3.1)) and

then the whole process gets out of control. To fix this problem, the frequency of 480nm

light must be precisely tuned to a preselected Rydberg state, of which interaction with a

ground state atom has the same Condon point. Therefore an additional required condition

is that the density of atomic ensemble must be prepared in which the average separation

distance between atoms is larger than the selected Condon point.
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3.3 Analysis of single-atom loading probability

The possibility of single-atom loading is evaluated through the probability of oc-

currence of one-body collisional loss compared to other processes including elastic colli-

sion, no collision, two-body collisional loss, and one-body loss via one-body excitation.

In principle, to fully characterize the dynamic of cold collision between atoms in light

field, one need to treat the problem quantum mechanically using the scattering theory.

To simplify the problem, we treat the motion of two colliding atoms in an optical poten-

tial classically but excitation semi-classically using the Landau-Zener model presented in

Chapter 2. Let define five possible scattering processes relevant in the determination of

single-atom loading efficiency as follow:

1. One-body collisional loss: collision takes place and one of two colliding atoms

escapes the trap after collision finished. If this scattering process dominate, higher

probability of loading single atom. This channel is denoted by D(2|1).

2. Two-body collisional loss: collision takes place and both of two colliding atoms es-

cape the trap after collision finished. This scattering process reduces the efficiency

of single-atom loading. This channel is denoted by D(2|2).

3. Elastic collision: collision takes place and both of two colliding atoms still are in

the trap after collision because the kinetic energy of each atom dose not change.

This channel is denoted by D(2|0).

4. No collision: collision does not take place, denoted by D(2|N).

5. One-body loss via one-body excitation: an atom can gain additional kinetic energy

by scattering with near or on resonance photons. This process heats atomic ensem-

ble and cause trap loss, hence it reduces efficiency of single-atom loading. This

process is denoted by D(1|1).

Clearly that the process D(2|1) needs to strongly dominate over the other processes

especiallyD(2|2) andD(1|1) in order to achieve the determinism of single-atom loading.
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To look for a possibility under practical conditions, let consider the light-assisted collision

between a rubidium Rydberg atom in 35D5/2 and a ground-state rubidium atom in 5S1/2

in an optical dipole trap with 10MHz trap depth. Assuming atomic ensemble in the trap

is in thermal equilibrium and has temperature of 65 µK. The approximated repulsive

adiabatic interaction potential of 5S1/2 + 35D5/2 is shown in Fig.(3.3). This potential

was calculated by using e-B scattering length presented in Chapter 2. The state 5P3/2 is

the intermediate level in this case. Throughout the discussion, the condition Eq.(3.3) is

assumed to be satisfied since it can be achieved in typical dipole trap experiment without

special effort.
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Figure 3.3: Approximated repulsive semi-molecular potential of 5S1/2 + 35D5/2.

One-body excitations of both 5P3/2 and 35D5/2 contribute to the occurrence of

D(1|1) process. At first glance minimizing the occurrence of D(1|1) caused by excita-

tion of 5P3/2 can be done by setting far detune ∆ from D2 line resonance. However, Eq.()

implies that if ∆ is too large, the two-photon excitation rate will be significantly reduced,

hence occurrence ofD(2|1). To find an optimum range of ∆, it is set to be an independent

variable that all possible occurrences are plotted as function depending on it. For the con-

tribution from one-body excitation of 35D5/2, the two-photon detuning δ is thus chosen

to be 3 MHz above asymptotic line as shown in Fig.(3.3). This is a reasonable value be-

cause the power broadening of two-photon transition of isolated atom is only around 770

kHz, hence low one-body loss via one-body excitation can be expected. In addition, the
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detuning δ of 3 MHz is less than the trap depth and hence excitation at the Condon point

does not induce two-body collisional loss and also whenever a colliding pair is excited to

the repulsive region, one can ensure D(2|1) process is forced to take place.

The source of D(2|2) arises from the light-assisted collision between an atom in

5S1/2 and its colliding pair in 5P3/2 state. The collision can be induced by 780 nm light

whose detuning ∆ is blued from resonance, in this case it is 100 MHz. The dipole-

dipole interaction of 5S1/2 + 5P3/2 can cause energy shift in which the frequency of

detuned 780 nm becomes on resonance of semi-molecular potential. Since the detuning

of 100 MHz is much larger than the trap depth, this type of collision causes D(2|2).

However both D(2|1) and D(2|2) take place at different Condon points, RC1 and RC2

respectively. Since RC1 is normally longer than RC2, the occurrence of D(2|2) can be

strongly suppressed by preparing the atomic ensemble in a low density. Fig.(3.4) shows

the probability distribution function of separation distance of the two adjacent atoms at

density of 3×1011 cm−3. The proportion of a colliding pair having the separation distance

in which the light-assisted collision of 5S1/2 + 35D5/2 takes place is higher than the

proportion of 5S1/2+5P3/2. ThereforeD(2|1) collision through 5S1/2+35D5/2 interaction

dominates over D(2|2).
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Figure 3.4: Distribution of inter-particle distance

Fig.(3.5) shows the approximated strength in arbitrary unit of occurrences of each

scattering process as function of intermediate detuning ∆. This plot was obtained from

38



applying Landau-Zener model and taking into account that D(2|1) and D(2|2) occur at

different Condon points. At detuning of 100 MHz, the occurrence of D(2|1) dominates

over D(2|0), D(1|1), and D(2|2). D(2|N) process has the maximum strength but funda-

mentally it does not affect the efficiency of single-atom loading except the time used to

switch on excitation lasers.
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Figure 3.5: Occurrence strength of scattering processes as function of intermediate de-
tuning. The gray shaded area covers the range of the detuning from 0 MHz to 80 MHz in
order to indicate the safe range from one-body excitation that induces D(1|1).

3.4 Summary

Apart from all crucial conditions presented in this chapter, there however are advan-

tages of our proposed mechanism over the process implemented in [17]. First, it does not

need the large blue detuning, that may induces two-body collisional loss event. Hence the

high probability of one-body collisional loss can be expected. Second, although the fine-

tuning on the two-photon excitation is needed, the overall performance does not strongly

depend on trap depth and all uncontrollable thermal parameters, e.g. energy shared be-

tween collision pair, do not determine the one-body loss event or single-atom loading

efficiency. Therefore this mechanism can be applied to the preparation of optical lattices

where each well is filled with just single atom.
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CHAPTER 4

Investigation of Repulsive Molecular Rydberg State

This chapter reports the experimental investigation and exploration of the adiabatic

repulsive potential curve of Rb2 in Rydberg state and the possibility of exploiting such in-

teraction for the sake of single-atom loading technique. Section 4.1 describes the optical

circuits designed for preparing the optical frequencies required for the Rydberg excitation

and detection of rubidium-87. In this experiment atoms are initially cooled and trapped by

the magneto-optical trap and then loaded into one-dimensional optical lattice before ap-

plying Rydberg excitation. Section 4.2 presents the diagnostic of atomic ensemble in the

lattice. The strategy for investigation of repulsive interaction of Rb2 and the experimental

results are presented in section 4.3.

4.1 Experimental setup

The section details the optical setup of laser system required for operating the

magneto-optical trap, one-dimensional optical lattice, and two-photon excitation of Ryd-

berg states of rubidium-87 atom.

4.1.1 Magneto-optical trap lasers

Generation of a rubidium magneto-optical trap (MOT) requires two optical frequen-

cies: MOT-cooling laser and MOT-repumping laser. The frequencies of these laser differ

by 6.8GHz in rubidium-87. The optical schematics of cooling and repumping lasers are

shown in Fig.(4.1) and Fig.(4.2) respectively. The cooling laser serves the optical fre-

quencies for both MOT loading and MOT imaging processes. The whole laser system is

based on phase lock technique using two the external cavity diode lasers (ECDL) with

Littrow configuration. The output frequency of ECDL 0 is stabilized using standard satu-

rated absorption spectroscopy and used as the reference frequency in phase locking. The

frequency is locked with respect to the crossover peak F = CO(1, 3) D2 line. ECDL 1
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serves the main power of cooling laser using the tapered amplifier (TA). The output fre-

quency of ECDL1 is stabilized with frequency of ECDL0 using the phase locking. The

repumping laser is obtained from ECDL2 whose output frequency is locked at transition

frequency F = 1→ F ′ = 2.
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Figure 4.1: Optical schematic of MOT cooling laser. The phase locking technique is used
to stabilize output frequency of ECDL1 with respect to ECDL0. The output power was
amplified by the tapered amplifier. OI = optical isolator, HWP = haft-wave plate, QWP =
quarter-wave plate, APP = anamorphic prism pair, PBS = polarizing beam splitter
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Figure 4.2: Optical schematic of MOT repumping laser.
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4.1.2 Optical lattice laser

The lattice trap laser produces a laser beam for generating an one-dimensional op-

tical lattice formed by the cavity in the chamber. In this experiment, the lattice laser is a

homemade external cavity diode laser (ECDL3) operating at the wavelength of 808 nm.

The laser was controlled via a homemade current controller and a homemade tempera-

ture controller. The dipole laser has a total optical output power of 100mW but due to

the non-Gaussian profile the power much loss by coupling into a fiber. Hence the final

power before going into the experiment is 9 mW. The frequency of laser was stabilized

to a mode of tranfercavity using Pound-Drever-Hall technique. The schematic of optical

setup around the lattice laser is shown in Fig.(4.3).
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Figure 4.3: Optical schematic of optical lattice laser.

4.1.3 Probe laser

The optical schematic of probing lasers is shown in Fig.(4.4). The optical frequency

used for the Rydberg excitation was derived from the external cavity diode lasers (ECDL

4) based on the Littrow configuration. ECDL 4 is a homemade laser system using an anti-

reflection coated (AR) laser diode as a light source in order to avoid mode hopping. The

output frequency is stabilized with the transfer cavity via a standard Pound-Drever-Hall

configuration. In order to set the stabilized frequency with respect to transition frequency

of rubidium-87. The computer controller AOM5 and EOSpace EOM were used to adjust

the locked frequency according the the error signal obtained from the saturated absorption

spectroscopy.
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Figure 4.4: Optical schematic of probe laser for Rydberg excitation.

4.1.4 Coupling laser

Fig.(4.4) depicts the optical schematic of 480 nm laser. The laser serves the optical

frequency used for two-photon transition of Rydberg state as the coupling laser. Since

there is no available laser diode directly emits 480 nm light, a system of doubling fre-

quency was exploited. The 960 nm laser (ECDL5) was used to produce 480nm light by

coupling the 960nm light into the Bow-tie cavity containing the crystal used for produce

doubled frequency photons. Due to low efficiency of doubling frequency creation. The

tapered amplifier (TA2) was used to increase the overall output power of 480nm coupling

light. The seed frequency of 960nm laser is stabilized with the transfer cavity using a

standard Pound-Drever-Hall configuration. The frequency of coupling light is tuned can

controller by computer-controlled EOSpace EOM.

4.1.5 Experimental geometry

Fig. (4.6) shows the experimental configuration used for study trap loss due to

light-assisted cold collision between Rydberg atom and ground state atom. The one-

dimensional optical lattice is formed by linear polarized 808nm wavelength light in high

finesses cavity. The power of 808nm laser is 9 mW before going into the cavity and
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Figure 4.5: Optical schematic of coupling laser for Rydberg excitation.

this leads to the trap depth (total AC Stark Shift of 52S1/2F = 1, 2) of 7 MHz or 380

µK. The magnetic field of 6.5 G for defining a quantization axis is generated by a pair

of Helmholtz coil. The field direction is downward, hence defines +z axis direction. To

measure trap loss, we perform atom number counting by absorption imaging method. The

780nm imaging beam is directed from the bottom pass through the lattice and then go to

the camera. The imaging beam has σ− polarization with respect to direction of magnetic

field. In the same direction, there is a 780nm probe beam for applying two-photon tran-

sition. The 480nm coupling beam goes into the chamber in the same direction as 808nm

dipole trap beam. This helps the coupling beam to interact with almost atoms in the lat-

tice. Note that the linear polarization of the coupling beam is superposition of σ+ and σ−

along the quantization axis. The MOT-repumping beam is setup to pass the lattice along

y axis. Fig. (4.7) shows some parameters about the experiment.

4.2 One-dimensional optical lattice diagnosis

Since the nature of light assisted collision depends on many factors including aver-

age separation distance between two adjacent atoms, motional temperature of sample and

the rate of excitation to a semi-molecular potential, the efficiency of single-atom loading

also depends on such factors. Hence the atomic sample needs to be characterized in or-

der to get necessary information needed for exploring the repulsive interaction between
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Figure 4.6: The configuration of laser beams used in the experiment: The red and blue
arrows show propagation direction of 780nm probe beam and 480nm coupling beam re-
spectively. The two double arrows on the right hand side represent linear polarization
direction of 808nm dipole beam and the coupling beam respectively. MOT-repump beam
propagates in +y direction with circular polatization. The downward magnetic field B
define quantization axis +z.

a Rydberg atom and a ground-state atom. The characteristics of atomic ensemble in the

optical lattice including number of stored atoms, trap lifetime, density distribution, and

temperature are presented in this section.

4.2.1 Trap lifetime of optical lattice

Under the vacuum condition operated in this work and in the absence of any laser

light except the dipole laser, loss of trapped atoms in the optical lattice can occur by

collision with thermal gases in the chamber. The rate of such collision determines the

lifetime of atoms in the trap. Fig.(4.8) shows the measured number of stored atom de-

caying exponentially as function of time. Due to temperature fluctuation caused by the

heated rubidium getter, the typical values of trap lifetime achieved in the experiment is

limited to 580 ms.
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Figure 4.7: Experimental parameters in Rydberg experiment

4.2.2 Temperature of optical lattice

Considering the thermal cloud of lattice and assuming that trapped atoms are in

a thermal equilibrium where the Maxwell-Boltzmann static is valid, the temperature of

cold atomic cloud can be determined from the free-space ballistic thermal expansion. The

measurement begins by switching off the lattice beam. After a delay time τ , the camera

shutter is opened and the probe beam is switched on and then an absorption image of

atomic cloud is captured. Due to the cloud is distributed in a Gaussian profile, the standard

deviation σ of the distribution can be extracted from the image. By varying the delay time

and collecting the corresponding σ(τ), the temperature T can be calculated by apply a

linear fitting to the equation [43]

σ2(τ) = σ2
o +

kBT

m
τ 2, (4.1)
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Figure 4.8: Measured trap lifetime of rubidium atoms in the optical lattice. Trap lifetime
of 588.3 ms was obtained by fitting the data with exponential decay function.

wherem is the mass of a rubidium atom in SI unit. The plot of squared standard deviation

versus squared delay time is shown in Fig.(4.9) and the fit corresponds to a temperature of

65 µK. However the temperature gradually increases over time due to heating processes

contributed by interaction with 808nm lattice laser.

4.2.3 Density distribution of optical lattice

According to the Maxwell-Boltzmann statistic, trapped atoms stored in an optical

potential U(~r) at equilibrium temperature T have density distribution n(~r) given by

n(~r) = noexp

(
−U(~r)

kBT

)
, (4.2)

where no is the peak density and ~r is position vector. Trap potential of optical lattice

can be approximated as the 3D harmonic potential that has cylindrical symmetry. Con-

sequently, the density distribution of atomic cloud has Gaussian profile. Gaussian fit of

the distribution along axial and radial directions are shown in Fig.(4.10). It should be

noted that the distribution shown in the figure was obtained after letting atomic cloud

ballistically expands for 1.5 ms before the images were taken. In order to find the true

density distribution profile, the measured temperature and Eq.(4.1) are used to calculate

47



0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5
0.

0.005

0.01

0.015

0.02

0.025

0.03

Τ
2 ms2

Σ
2
HΤ
L

m
m

2

Cloud Size HΣoL: 23.05 Μm

Temperature: 63.5 ΜK

Figure 4.9: Temperature measurement by free-space ballistic expansion method. The data
(red points) are fitted with Eq.(4.1).

initial standard deviation of Gaussian profile before releasing the trap. The distribution of

number of stored atoms in each lattice site is shown in Fig.(4.11).
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Figure 4.10: Gaussian fitted profile represents how position of trapped atoms are dis-
tributed in the trap. The signal count data were obtained from converting the absorption
image of atomic cloud Fig.(4.18)(right).

In a single lattice site, the standard deviation of atomic cloud distribution along the

axial direction is much smaller than the typical range of interaction between a Rydberg

atom and a ground-state atom. The density distribution appropriated for this work is

represented in 2D.
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Figure 4.11: The distribution of number of trapped atom along cavity axis.

4.3 Trap loss due to blue-detuned two-photon excitation

This section details the experimental procedure to investigate and explore the pos-

sibility of exploiting a repulsive interaction between a Rydberg rubidium atom and a

ground-state atom. In order to confirm the existence of a repulsive Rydberg-ground inter-

action that has a practical capability of supporting our mechanism, the trap loss measure-

ment due to blue-detuned Rydberg excitation needs to be performed. There are two types

of measurement presented in this work.

4.3.1 Trap loss as function of detuning

The first type of this measurement is done by comparing the number of atoms re-

maining in the trap before and after applying the Rydberg excitation lasers whose optical

frequency is varied across the resonance frequency. Basically, the probability of trap

loss would be maximum when the optical frequency of excitation light is resonant with

Rydberg transition frequency and it decreases when the frequency of the laser is off the

resonance.

4.3.2 Trap loss at fixed detuning

The second type of trap loss measurement is performed by fixing the detuning above

the one-body excitation resonance. Then the remaining number of stored atom is plotted

as function of probing time.
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Figure 4.12: Time sequence of experiment: The 480nm coupling beam is turned on 1ms
before 780nm probe beam to avoid trap loss due to 780nm light. MOT-repumping beam
is also turned on over the probing period. This helps to pump atoms that decays from the
Rydberg state to 52S1/2F = 1 go back to 52S1/2F = 2 for next Rydberg excitation.

4.3.3 Time sequence and results

The time sequence of the experiment is shown in Fig. (4.12). The cold atomic

ensemble is initially prepared from standard magneto optical trap (MOT) while the optical

lattice is turned on. This produces dark magneto optical trap with low temperature. After

MOT loading period, the intensity of MOT beams is then decreased and its detuning (from

52S1/2F = 2 → 52P3/2F
′ = 3) is gradually changed from -18 MHz to -185 MHz for

performing sub-Doppler cooling. The cloud after this cooling process has temperature of

65 µK. In the probing period, the 480nm coupling beam is turned on 1ms before 780nm

probe beam for preventing any trap loss due to 780nm light. The detuning and power of

the probe beam is fixed at blue-detuning +100 MHz from the intermediate state, 52P3/2

see Fig (4.13), and 0.8 µW respectively. This corresponds with the Rabi rate of 0.8 MHz.

The detuning of the 480nm coupling beam is varied from 0 MHz to 20 MHz with respect

to the effective bare transition (52S1/2 → 502S1/2 and no AC Stark Shift). The coupling

beam has power of 70 mW and this corresponds with the effective two-photon transition

rate of 54 kHz, Ω = Ω1Ω2/(2∆). The Fig. (4.14-4.17) show the measured number of
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Figure 4.13: Excitation Scheme of Rydberg experiment: the energy levels presented here
are bare states, no AC Stark shift.

trapped atom as function of detuning ∆ for 100 ms and 20 ms probing time. For imaging

period, the 780nm imaging beam is derived from the MOT beam with detuning of -2.2

MHz from 52S1/2F = 2 → 52P3/2F = 3 transition. The pulse length of imaging beam

is 100 µs and the optical lattice is tuned off 1.5 ms before taking images. This trap

dropping releases the cloud expanding and hence reduces the optical density of atomic

cloud. This improves efficiency of trapped atom counting. There are three images taken in

the detection process; with atom, without atom, and background. These images are taken

with 35 ms apart from each other. To extract the number of trapped atoms, the background

is subtracted from the first two images and then the second image is subtracted from

the first image. The trap number is given by integration over the area of atomic cloud.

Fig. (4.18) shows an example of atomic cloud image after subtraction.

4.4 Summary and outlook

Up to present, we have performed theoretical analyses, numerical calculations and

experiment for investigating whether or not the Rydberg-ground repulsive adiabatic po-
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Figure 4.14: Number of remaining trapped atom after 100 ms of probing time as function
of detuning ∆ from Rydberg state 502S1/2. The lowest dip at 7 MHz shows trap loss
due to on-resonance Rydberg excitation compensated with AC Stark shift of ground state
52S1/2. The other small dip at 15 MHz shows trap loss due to blue-detuning excitation.

tential energy have strong enough potential for leading to the deterministic single-atom

loading in an optical micro-trap. In the future, we are looking for the scalable single-atom

source on demand based on this technique and also the discussion of combination with

the collisional blockade.
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Figure 4.15: This plot shows the standard deviation of atomic cloud Gaussian fitting after
100 ms probing time. At 15 MHz detuning it shows heating (increase in cloud size) due
to blue-detuning Rydberg excitation.
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Figure 4.16: Number of remaining trapped atom after 20 ms of probing time as function
of detuning ∆ from Rydberg state 502S1/2. The lowest dip at about 6 MHz shows trap
loss due to on-resonance Rydberg excitation compensated with AC Stark shift of ground
state 52S1/2. The next small dip at 15 MHz shows the trap loss due to blue-detuning
excitation.
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Figure 4.17: This plot shows the standard deviation of atomic cloud Gaussian fitting after
20 ms probing time. At 15 MHz detuning it does not show cleary heating because short
excitation time.

Figure 4.18: In imaging process, the first image (left) is taken while trapped atom are
released 1.5ms before taking image and expanding ballistically. The second image (cen-
ter) is taken after waiting until there is no atoms in the area of imaging. Theses images
are subtracted from each other for getting the cloud of atom in the lattice (right). The
raw images have resolution of 2048x2048 pixels. Gaussian resmapling method is used to
reduce the resolution down to 512x512 pixels. The totoal number of trapped atom is 3
million.
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APPENDIX A

Basis Wave Functions

In my calculation there are ten two-electron angular momentum basis in the LS

representation expanded over |`1`2LMLSMS〉 basis set with MJ = 0. The spin quantum

numbers of two electrons are omiited because all electrons have the same spin 1/2. From

Eq. (2.23) we obtain

2S+1LJ = |`1`2LMLSMS〉

1 : 1S0 = |000000〉

2 : 3S1 = |000010〉

3 : 1P1 = |011000〉

4 : 3P0 =
1√
3
|01111−1〉 − 1√

3
|011010〉+

1√
3
|011−111〉

5 : 3P1 =
1√
2
|01111−1〉 − 1√

2
|011−111〉

6 : 3P2 =
1√
6
|01111−1〉+

2√
6
|011010〉+

1√
6
|011−111〉

7 : 1D2 = |022000〉

8 : 3D1 =

√
3

10
|02211−1〉 −

√
4

10
|022010〉+

√
3

10
|022−111〉

9 : 3D2 =
1√
2
|02211−1〉 − 1√

2
|022−111〉

10 : 3D3 =
1√
5
|02211−1〉+

√
3

5
|022010〉+

1√
5
|022−111〉

(A.1)
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Diagonal matrix elements are

D11 =
1

R

D22 =
1

R

D33 =
1

R
+
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(A.2)

off-diagonal matrix elements are

D13 =
1√
3

( r

R2
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αd
r2R2
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5
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APPENDIX B

JJ-LS Transformation

The tranformation from jj representation into LS representation can be written as

|`1`2LSJMJ〉 =
J∑

j1,j2

CJ,MJ
j1,j2
|`1`2j1j2JMJ〉 (B.1)

where the coefficients CJ,MJ
j1,j2

can be calculated from the following procedure. Starting

from the expansion

|`1`2LSJMJ〉 =

MJ∑
ML,MS

CJ,MJ

MLMS
|`1`2LMLSMS〉 , (B.2)

where the basis vector |`1`2LMLSMS〉 can be further expanded in uncoupld electron

spinor as

|`1`2LMLSMS〉 =

 ML∑
m`1

,m`2

CL,ML
m`1

m`2
|`1m`1`2m`2〉

 MS∑
ms1 ,ms2

CS,MS
ms1ms2

|ms1ms2〉


(B.3)

Applying the same procedure with jj representation,

|`1`2j1j2JMJ〉 =
∑

mj1
,mj2

CJ,MJ
mj1

mj2
|`1`2j1mj1j2mj2〉 (B.4)

where

|`1`2j1mj1j2mj2〉 =

 ∑
m`1

,ms1

C
j1,mj1
m`1

ms1
|`1m`1ms1〉

 ∑
m`2

,ms2

C
j2,mj2
m`2

ms2
|`2m`2ms2〉


(B.5)

Due to the valence electron of the neutral atom is in s orbital, the quantum number `1 is

alway zero. The jj representation naturally is used as appropriate basis for Dirac wave
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function. Redefining the basis vector |`1`2j1j2JMJ〉 by

|κJMJ〉 ≡ |`1`2j1j2JMJ〉 , (B.6)

where κ is the relativistic quantum number used to define eigenstates of Dirac equation.

In addition, the fundamental basis set |`1`2m`1m`2ms1ms2〉 is defined as

|φ1〉 = |0000 ↑↓〉

|φ2〉 = |0000 ↓↑〉

|φ3〉 = |0101 ↓↓〉

|φ4〉 = |0100 ↑↓〉

|φ5〉 = |0100 ↓↑〉

|φ6〉 = |010−1 ↑↑〉

|φ7〉 = |0201 ↓↓〉

|φ8〉 = |0200 ↑↓〉

|φ9〉 = |0200 ↓↑〉

|φ10〉 = |020−1 ↑↑〉

(B.7)

where the symbols ↑ and ↓ denote ms = 1/2 and ms = −1/2 respectively. Notice that all

states in Eq. (B.7) corresponds with zero projection of total anular momoentum MJ = 0

and can be used to expand all states listed in Eq. (A.1).
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|3P0〉
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|3D2〉

|3D3〉
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2
−1√

2
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3
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−1√
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√

3
10
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√
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10
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2
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5

√
3
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√
3
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1√
5





|φ1〉

|φ2〉

|φ3〉

|φ4〉

|φ5〉

|φ6〉

|φ7〉

|φ8〉

|φ9〉

|φ10〉


(B.8)
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and for jj representation |κJ〉 we obtain



|−10〉

|−11〉

|10〉

|11〉

|−21〉

|−22〉

|21〉

|22〉

|−32〉

|−33〉



=
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√
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−
√

3
10
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√
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10
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5

−1√
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−
√

3
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5
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3
10
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5
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√
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|φ1〉

|φ2〉

|φ3〉

|φ4〉

|φ5〉

|φ6〉

|φ7〉

|φ8〉

|φ9〉

|φ10〉


(B.9)

Hence I can write LS representation in terms of jj representation
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|3P2〉

|1D2〉

|3D1〉
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|3D3〉
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√
2
5

0

0

0

0

0

0

0

−
√

2
5

0

√
3
5

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0




|−10〉

|−11〉

|10〉

|11〉

|−21〉

|−22〉

|21〉

|22〉

|−32〉

|−33〉


(B.10)
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APPENDIX C

Quantum Dynamic of four-level system in magneto-optical trap

The physical system we study using the described formulation in the section 2.5

is a stationary four-level Rb-85 atom at center of MOT in the presence of cooling and

repumping laser fields. The schematic of energy levels and detuning of fields with re-

spect to transition is shown in Fig.(C.1). At the center of trap, the magnetic field is

very small in which the Zeeman effect is negligible compared to the Rabi frequencies

driven by the cooling and repumping laser fields. This approximation corresponds with

an atom interacting with isotropic light polarization and it allows us to apply effective

dipole transitions from S1/2, F to P3/2, F
′ without concerning sub-magnetic levels mF .

The field-free Hamiltonian of four-level atom is

Ĥ0 =


~ω1 0 0 0

0 ~ω2 0 0

0 0 ~ω3 0

0 0 0 ~ω4

 (C.1)

and the optical interaction with cooing beam and repumping beam are represented in

interaction picture as

ĤI =


0 〈1|V |2〉 0 0

0 ~ω2 0 0

0 0 ~ω3 0

0 0 0 ~ω4

 (C.2)

By applying Eq.(2.69) to this system, the obtained optical Bloch equations are the sys-

tem of first order coupled differential equations. Under a particular initial condition, the

equations can be solved numerically.

In Figure C.2(a)-(b), we present the numerical solutions of optical Bloch equations
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  5
2S1/2

  5
2P3/2

3.03$GHz$

   F = 2
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  ΩC

  ΩR

  ΔR

  ΔC

   F = 3

   F = 3'
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Figure C.1: The D2 line energy levels of rubidium-85. Hyperfine splitting of different
F states of excited state 52P3/2 and ground state 52S1/2 are 120.6 MHz and 3.03 GHz
respectively. The cooling light and repumping light have the detuning of ∆C and ∆R

from resonance frequencies F = 3→ F = 4′ and F = 2→ F = 3′. ΩC and ΩR denote
on-resonance Rabi frequencies of the two transitions. The spontaneous decay channels
from F = 3′ and F = 4′ are shown by dash-doted blue line.

under two different initial conditions. The diagonal elements of density matrix are plotted

as function of time and it denotes the evolution of probability of finding atoms occupying

each hyperfine energy level. Figure C.2(a) shows the result where atom is initially in the

lower ground state F = 2 and the populations reach the steady state at 2µs. This means

at steady state of MOT the population of upper ground state F = 3 is dominate while

there is around 20 percents atom occupying the excited state F = 4′. The result shown

in Figure C.2(b) corresponds with the initial condition in which the population at the

beginning equally distributes between the two ground states. Although these two initial

conditions give the same steady state solutions, the main feature of the second condition

is the beat-like fluctuation of populations in F = 3 and F = 3′. This beat oscillation

happens due to the interference between two transitions 2 → 3′ and 3 → 4′ that have

slightly different Rabi oscillation frequencies. Figure C.3 shows the time evolution of
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coherence term relating to phase relation between F = 3 and F = 3′. According to

the first condition, Figure C.3(a), the real part and imaginary part of the coherence term

oscillate with equal amplitude and hence its trajectory reveals a helix curve. In the other

hand, the coherence of the second initial condition, Figure C.3(b), has the behavior of

perturbed-helical motion.
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Figure C.2: Dynamic of populations under the presence of the cooling field and the re-
pumping field. (a) atom is initially prepared in the ground state F = 2 and (b) the system
starts from superposition of the two ground states, F = 2 and F = 3, with equal prob-
ability. The frequency of repumping field is on resonance while the detuning of cooling
beam is of 2π(-14)MHz. The Rabi frequencies ΩC and ΩR are 114 MHz and 11.3 MHz
respectively.
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Figure C.3: The real and imaginary parts of coherence term ρ33′(t) as function of time:
(a) atom is initially setup in lower ground state and (b) atom initially evolve from equal
probability over two ground states.
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